Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 247: 120804, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925861

RESUMO

The world has moved into a new stage of managing the SARS-CoV-2 pandemic with minimal restrictions and reduced testing in the population, leading to reduced genomic surveillance of virus variants in individuals. Wastewater-based epidemiology (WBE) can provide an alternative means of tracking virus variants in the population but decision-makers require confidence that it can be applied to a national scale and is comparable to individual testing data. We analysed 19,911 samples from 524 wastewater sites across England at least twice a week between November 2021 and February 2022, capturing sewage from >70% of the English population. We used amplicon-based sequencing and the phylogeny based de-mixing tool Freyja to estimate SARS-CoV-2 variant frequencies and compared these to the variant dynamics observed in individual testing data from clinical and community settings. We show that wastewater data can reconstruct the spread of the Omicron variant across England since November 2021 in close detail and aligns closely with epidemiological estimates from individual testing data. We also show the temporal and spatial spread of Omicron within London. Our wastewater data further reliably track the transition between Omicron subvariants BA1 and BA2 in February 2022 at regional and national levels. Our demonstration that WBE can track the fast-paced dynamics of SARS-CoV-2 variant frequencies at a national scale and closely match individual testing data in time shows that WBE can reliably fill the monitoring gap left by reduced individual testing in a more affordable way.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , COVID-19/epidemiologia , Genômica , Inglaterra/epidemiologia
2.
mBio ; : e0146823, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877702

RESUMO

Wastewater-based epidemiology is a powerful tool for monitoring the emergence and spread of viral pathogens at the population scale. Typical polymerase chain reaction (PCR)-based methods of quantitative and genomic monitoring of viruses in wastewater provide high sensitivity and specificity. However, these methods are limited to the surveillance of target viruses in a single assay and require prior knowledge of the target genome(s). Metagenomic sequencing methods may represent a target-agnostic approach to viral wastewater monitoring, allowing for the detection of a broad range of target viruses, including potentially novel and emerging pathogens. In this study, targeted and untargeted metagenomic sequencing methods were compared with tiled-PCR sequencing for the detection and genotyping of viral pathogens in wastewater samples. Deep shotgun metagenomic sequencing was unable to generate sufficient genome coverage of human pathogenic viruses for robust genomic epidemiology, with samples dominated by bacteria. Hybrid-capture enrichment of shotgun libraries for respiratory viruses led to significant increases in genome coverage for a range of targets. Tiled-PCR sequencing led to further improvements in genome coverage compared to hybrid capture for severe acute respiratory syndrome coronavirus 2, enterovirus D68, norovirus GII, and human adenovirus F41 in wastewater samples. In conclusion, untargeted shotgun sequencing was unsuitable for genomic monitoring of the low virus concentrations in wastewater samples analyzed in this study. Hybrid-capture enrichment represented a viable method for simultaneous genomic epidemiology of a range of viral pathogens, while tiled-PCR sequencing provided the optimal genome coverage for individual viruses with the minimum sequencing depth. IMPORTANCE Most public health initiatives that monitor viruses in wastewater have utilized quantitative polymerase chain reaction (PCR) and whole genome PCR sequencing, mirroring techniques used for viral epidemiology in individuals. These techniques require prior knowledge of the target viral genome and are limited to monitoring individual or small groups of viruses. Metagenomic sequencing may offer an alternative strategy for monitoring a broad spectrum of viruses in wastewater, including novel and emerging pathogens. In this study, while amplicon sequencing gave high viral genome coverage, untargeted shotgun sequencing of total nucleic acid samples was unable to detect human pathogenic viruses with enough sensitivity for use in genomic epidemiology. Enrichment of shotgun libraries for respiratory viruses using hybrid-capture technology provided genotypic information on a range of viruses simultaneously, indicating strong potential for wastewater surveillance. This type of targeted metagenomics could be used for monitoring diverse targets, such as pathogens or antimicrobial resistance genes, in environmental samples.

3.
Food Environ Virol ; 15(1): 71-81, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36790663

RESUMO

Faecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto wastewater-based epidemiology (WBE) for monitoring the coronavirus-disease 2019 (COVID-19) pandemic. WBE for SARS-CoV-2 has been deployed in 70 countries, providing insights into disease prevalence, forecasting and the spatiotemporal tracking and emergence of SARS-CoV-2 variants. Wastewater, however, is a complex sample matrix containing numerous reverse transcription quantitative PCR (RT-qPCR) inhibitors whose concentration and diversity are influenced by factors including population size, surrounding industry and agriculture and climate. Such differences in the RT-qPCR inhibitor profile are likely to impact the quality of data produced by WBE and potentially produce erroneous results.To help determine the possible impact of RT-qPCR assay on data quality, two assays employed by different laboratories within the UK's SARS-CoV-2 wastewater monitoring programme were assessed in the Cefas laboratory in Weymouth, UK. The assays were based on Fast Virus (FV) and qScript (qS) chemistries using the same primers and probes, but at different concentrations and under different cycling conditions. Bovine serum albumin and MgSO4 were also added to the FV assay reaction mixture. Two-hundred and eighty-six samples were analysed, and an external control RNA (EC RNA)-based method was used to measure RT-qPCR inhibition. Compared with qS, FV showed a 40.5% reduction in mean inhibition and a 57.0% reduction in inter-sample inhibition variability. A 4.1-fold increase in SARS-CoV-2 quantification was seen for FV relative to qS; partially due (1.5-fold) to differences in reverse transcription efficiency and the use of a dsDNA standard. Analytical variability was reduced by 51.2% using FV while qS increased the number of SARS-CoV-2 negative samples by 2.6-fold. This study indicates the importance of thorough method optimisation for RT-qPCR-based WBE which should be performed using a selection of samples which are representative of the physiochemical properties of wastewater. Furthermore, RT-qPCR inhibition, analytical variability and reverse transcription efficiency should be key considerations during assay optimisation. A standardised framework for the optimisation and validation of WBE procedures should be formed including concessions for emergency response situations that would allow flexibility in the process to address the difficult balance between the urgency of providing data and the availability of resources.


Assuntos
COVID-19 , Transcrição Reversa , Humanos , RNA Viral , Águas Residuárias , SARS-CoV-2 , Reação em Cadeia da Polimerase
4.
Nat Commun ; 13(1): 4313, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879277

RESUMO

Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias. Quantification of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence, but uncertainty in sensitivity and considerable variability has meant that accurate measurement remains elusive. Here, we use data from 45 sewage sites in England, covering 31% of the population, and estimate SARS-CoV-2 prevalence to within 1.1% of estimates from representative prevalence surveys (with 95% confidence). Using machine learning and phenomenological models, we show that differences between sampled sites, particularly the wastewater flow rate, influence prevalence estimation and require careful interpretation. We find that SARS-CoV-2 signals in wastewater appear 4-5 days earlier in comparison to clinical testing data but are coincident with prevalence surveys suggesting that wastewater surveillance can be a leading indicator for symptomatic viral infections. Surveillance for viruses in wastewater complements and strengthens clinical surveillance, with significant implications for public health.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , Prevalência , RNA Viral/genética , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Sci Total Environ ; 808: 151916, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34826466

RESUMO

Wastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration. We found no major difference in SARS-CoV-2 and faecal indicator virus (crAssphage) recovery from wastewater samples (n = 46) using these methods, PEG slightly (albeit non-significantly), outperformed AS and IP for SARS-CoV-2 detection, as a higher genome copies per litre (gc/l) was recorded for a larger proportion of samples. Next generation sequencing of 8 paired samples revealed non-significant differences in the quality of data between AS and IP, though IP data quality was slightly better and less variable. A controlled experiment assessed the impact of wastewater suspended solids (turbidity; 0-400 NTU), surfactant load (0-200 mg/l), and storage temperature (5-20 °C) on viral recovery using the AS and IP methods. SARS-CoV-2 recoveries were >20% with AS and <10% with IP in turbid samples, whilst viral recoveries for samples with additional surfactant were between 0-18% for AS and 0-5% for IP. Turbidity and sample storage temperature combined had no significant effect on SARS-CoV-2 recovery (p > 0.05), whilst surfactant and storage temperature combined were significant negative correlates (p < 0.001 and p < 0.05, respectively). In conclusion, our results show that choice of methodology had small effect on viral recovery of SARS-CoV-2 and crAssphage in wastewater samples within this study. In contrast, sample turbidity, storage temperature, and surfactant load did affect viral recovery, highlighting the need for careful consideration of the viral concentration methodology used when working with wastewater samples.


Assuntos
COVID-19 , Águas Residuárias , Humanos , SARS-CoV-2 , Tensoativos , Temperatura
6.
Plant J ; 92(2): 291-304, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28771859

RESUMO

Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Triticum/metabolismo , Zinco/deficiência , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/fisiologia , Triticum/genética , Triticum/fisiologia , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...